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Required: semantic dependencies
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TD maintains dependencies and stable unknowns.

TD tracks

▶ set of stable unknowns
▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.
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Example program

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}
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Incremental Abstract Interpretation

▶ Reluctant
Destabilization

▶ Incremental
Warning
Generation

▶ Update rules for
globals

▶ IDE Integration
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3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.
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Observation: Warnings can be reused as well
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Incremental Warning Generation

▶ Keep track of unknowns never destabilized during
incremental run

▶ Warnings generated at these unknowns can be reused
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Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:

▶ {0}, initial value in both versions
▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.
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Integrated into VS Code
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Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

▶ Intervals & exclusion sets
▶ Accesses & data-race detection
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Results on ZSTANDARD
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Our previous work

▶ [Seidl et al., Chrisfest’20]: Incremental Abstract
Interpretation

▶ [Erhard et al., STTT’23]: Interactive Abstract
Interpretation: Reanalyzing Multithreaded C Programs for
Cheap

▶ [Stemmler et al., PLDI’25]: Taking out the Toxic Trash:
Recovering Precision in Mixed Flow-Sensitive Static
Analyses

§/goblint/analyzer
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Vision: Interactive Abstract Interpretation During Development
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Expert Developer Diane
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Expert Developer Diane

▶ Coarse results immediately, refine in the background
▶ While fixing the most salient warning, the analysis may be

able to show less salient warnings spurious
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▶ Surface semantic information

▶ complete call-graph
▶ dead branches
▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane
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... and beyond soundness:

▶ Ask Diane why some alarm is false (e.g., "these two pointers
can never alias")

▶ Refine analysis relying on this information.
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...while limiting recomputation!
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Thank you!
▶ Precise incremental abstract interpretation of multi-threaded programs
▶ Ideas and ingredients for interactive abstract interpretation
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