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Observation: Software development is incremental

a\ > Software
\ i : i development is
" TOWreT N incremental

» Single commits
usually make small
‘ changes
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TD maintains dependencies and stable unknowns.

TD tracks
» set of stable unknowns
set of called unknowns —those are currently active
influence relationship between unknowns
mapping from unknowns to abstract values

when unknown changes, it is destabilized
— remove all unknowns from stable that depend on it and are not called.

>
>
>
>



Example program

int g = 0;

int main () {
create (foo, &qg);
return g;

}

voidx foo (int »*p) {
o= 1
return NULL;
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create (foo, &qg);

return g;

foo

» Treat variables
@ shared between
threads
R flow-insensitively:
° — Add unknown (g) to
collect abstraction

return NULL;  of all values g may

@ ever have
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Example Run of Top-Down Solver

p=&gy
main _.~~Globals oo » Call to

solve retmam

» recursively

crgéte(foo, &9) ; = 1; .
; computes solution
........ v — > stable
» called

return g; return NULL;
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TD is versatile.

TD supports

» dynamic dependencies between unknowns
» demand-driven analysis
» widening/narrowing

» mixed flow-sensivitity, i.e., may collect flow-insensitive information while
performing a flow-sensitive analysis otherwise
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Change in example program

int g = 0; int g = 0;

int main () { int main () {
create (foo, &g); create (foo, &qg);
return g; return g;

} — }

voidx foo (int »*p) { voidx foo (int »*p) {
*p = 1; *xp = 2;

return NULL; return NULL;
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Incremental Abstract Interpretation

{p::&€}”> ________________ . 1. Load old results
main ”_‘,‘«-“G'Oba's oo 2. Identify changed
functions
: {21 ™ = foo

creéte(foo, &9) ; -
3 3. Destabilize return

nodes of changed
functions

4. Call solve for retmain

return g; return NULL;
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int main () {
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Effects of changes are sometimes local to the procedure.

int g = 0;
int main () {
create (foo, &9g);
return g;
}
voidx foo (int «*p) {
p o= 1;
return NULL;

— Change has no impact outside of foo!

int g = 0;

int main () {
create (foo, &g);
return g;

}

voidx foo (int «*p) {
*p = 1;
printf ("foo\n") ;
return NULL;
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Reluctant Destabilization

1. Load results
2. Destabilize changed functions and start solver from there
Non-local changes will destabilize end point of main.

3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.
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Observation: Warnings can be reused as well

int main () {
int i = get_pointer();
return xij;

}

int+ get_pointer () {
printf ("get_pointer\n") ;
return NULL;

}

Warning:

Possible NULL-dereference

in line 3.

int main () {
int i = get_pointer();
return xi;
}
intx get_pointer () {
return NULL; —
}
Warning:
Possible NULL-dereference
in line 3.



Incremental Warning Generation

» Keep track of unknowns never destabilized during
incremental run

» Warnings generated at these unknowns can be reused
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Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions
» {1}, write by foo in first version
> {2}, write by foo in second version

Thus, (g) will have the value {0, 1,2} in the incremental analysis.

= Flow-insensitive unknowns will contain artifacts from earlier programs.
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Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

» Update Rules and Abstract Garbage Collection
» Remember where contributions came from
» A upon re-evaluation
» Completely remove contributions from dead contexts
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Integrated into VS Code

X) Fle Edt Selection View Go Run Terminal Help example.c - DemoProject W= Ubuntu-20.04] - Visual tucko Code

C eamplec 4 X
€ examps
#include <pthread.h>
#include <stdio.h>

int myglobal;
pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;

void *t_fun(void *arg) {
pthread_nutex_lock (&nutex1);

myglobal=myglobal+l;
11 pthread_mutex_unlock(&mutex1)
12 return NULL;

13}

15 int main(void) {

16 pthread_t id;

17 pthread_create(8id, NULL, t_fun, NULL);
18 pthread_mutex_lock(&mutex2);

19 myglobal=myglobal+l;

return NULL;

20 pthread_mutex_unlock(8mutex2);
21 pthread_join (id, NULL);

22 return o

23}

2

ewanal  sRomiems @  DEeuG consolE  ouT

v € examplec s

A
A\ Race] Group: Memory location myglobal@example.c4:5-4:13 (race with conf. 110)

ead_mutex_t mutexl
read_mutex_t mutex2 =

void *t_fun(veid *arg) {
pthread_mutex_lock(&mutexl);
myglobal=myglobal+l;

pthread_mutex_unlock(&mutex1);

wiite with [mhp{tid=[mainl;
xample.c45-4:13 (race

cated

main, t fun@./src/example.c1 73-17:40]), |
10)

(Race] Group: Memory lacation myglob with con,

5 WS Ubuntu-20.04

(mutex2), thread{main)]

v readwith [mhp:{tid=(main, t fun@Jsrc/example.c17:3-1740,
lock{mutex1), thread:{main, _fun@ /src/example.:17:3-17:401] (conf. 110) (exp: & myglobal)
read with [mhptid=[mainl; created=({main, { fun@./src/example.c:17:3-17:40), lock{mutex?), threacimaini] tconf, 110) (exp: & myglobal)
wite with [mhpe(tid={main, t fun@ fsrc/example.c:17:3-17:40l) kock(mutext], thread{main, ¢ fund 17:3-17:40]) (cont. 110) (exp: & myglobal)

conf. 110) (exp: & myglobal)
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Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

» Intervals & exclusion sets
» Accesses & data-race detection



Results on ZSTANDARD
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Results on ZSTANDARD

(logs scale)
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Our previous work

> [Seidl et al., Chrisfest’20]: Incremental Abstract
Interpretation

» [Erhard et al., STTT'23]: Interactive Abstract
Interpretation: Reanalyzing Multithreaded C Programs for GOB LIN'
Cheap ¢)/goblint/analyzer

» [Stemmler et al., PLDI'25]: Taking out the Toxic Trash:

Recovering Precision in Mixed Flow-Sensitive Static
Analyses
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From Incremental to Interactive

Consider not only changes to the input program,
but also user interaction!

(one may think of it as changing the analysis specification)
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Expert Developer Diane

» Coarse results immediately, refine in the background

» While fixing the most salient warning, the analysis may be
able to show less salient warnings spurious
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Expert Developer Diane

» Surface semantic information

> complete call-graph

> dead branches

> (non-)nullness of arguments
> ..

» Static analysis as treasure trove of information usually hidden
from Diane
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Expert Developer Diane

» To drill-down on warnings locally enable

(more) context-sensitivity

(more) path-sensitivity

(more) concurrency-sensitivity
(more) expressive abstract domains

vVVvyVvyyYy



... and beyond soundness:

» Ask Diane why some alarm is false (e.g., "these two pointers
can never alias")

» Refine analysis relying on this information.

<}



...while limiting recomputation!



Thank you!

» Precise incremental abstract interpretation of multi-threaded programs
» Ideas and ingredients for interactive abstract interpretation
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