
1/35

Towards Interactive Abstract Interpretation
for Multithreaded Programs

Michael Schwarz Helmut Seidl
+

Julian Erhard Karoliine Holter Simmo Saan
Sarah Tilscher Vesal Vojdani

Schloss Dagstuhl, October 2025



2/35

Provide Abstract Interpretation During Development



3/35

Abstract interpretation: Expensive Fixpoint Computation

Program
Control-

flow
Graphs

Equation
System Solution Warnings

Frontend
yields

Analysis

specifies

Fixpoint
Solver

computes
Postsolver
computes



3/35

Abstract interpretation: Expensive Fixpoint Computation

Program
Control-

flow
Graphs

Equation
System Solution Warnings

Frontend
yields

Analysis

specifies

Fixpoint
Solver

computes
Postsolver
computes



4/35

Observation: Software development is incremental

▶ Software
development is
incremental

▶ Single commits
usually make small
changes



4/35

Observation: Software development is incremental

▶ Software
development is
incremental

▶ Single commits
usually make small
changes



4/35

Observation: Software development is incremental

▶ Software
development is
incremental

▶ Single commits
usually make small
changes



5/35

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies



5/35

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies



5/35

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies



5/35

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies



5/35

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies



6/35

TD maintains dependencies and stable unknowns.

TD tracks

▶ set of stable unknowns
▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.



6/35

TD maintains dependencies and stable unknowns.

TD tracks
▶ set of stable unknowns

▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.



6/35

TD maintains dependencies and stable unknowns.

TD tracks
▶ set of stable unknowns
▶ set of called unknowns – those are currently active

▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.



6/35

TD maintains dependencies and stable unknowns.

TD tracks
▶ set of stable unknowns
▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns

▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.



6/35

TD maintains dependencies and stable unknowns.

TD tracks
▶ set of stable unknowns
▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values

▶ when unknown changes, it is destabilized
— remove all unknowns from stable that depend on it and are not called.



6/35

TD maintains dependencies and stable unknowns.

TD tracks
▶ set of stable unknowns
▶ set of called unknowns – those are currently active
▶ influence relationship between unknowns
▶ mapping from unknowns to abstract values
▶ when unknown changes, it is destabilized

— remove all unknowns from stable that depend on it and are not called.



7/35

Example program

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}



8/35

Example program

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Treat variables
shared between
threads
flow-insensitively:

=⇒ Add unknown ⟨g⟩ to
collect abstraction
of all values g may
ever have



8/35

Example program

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Treat variables
shared between
threads
flow-insensitively:

=⇒ Add unknown ⟨g⟩ to
collect abstraction
of all values g may
ever have



8/35

Example program

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Treat variables
shared between
threads
flow-insensitively:

=⇒ Add unknown ⟨g⟩ to
collect abstraction
of all values g may
ever have



8/35

Example program

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Treat variables
shared between
threads
flow-insensitively:

=⇒ Add unknown ⟨g⟩ to
collect abstraction
of all values g may
ever have



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}

*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



9/35

Example Run of Top-Down Solver

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

2

retfoo

foo

{p = &g}

{1}
*p = 1;

return NULL;

create(foo, &g);

return g;

▶ Call to
solve retmain

▶ recursively
computes solution

▶ stable

▶ called



10/35

TD is versatile.

TD supports

▶ dynamic dependencies between unknowns
▶ demand-driven analysis
▶ widening/narrowing

▶ mixed flow-sensivitity, i.e., may collect flow-insensitive information while
performing a flow-sensitive analysis otherwise



10/35

TD is versatile.

TD supports

▶ dynamic dependencies between unknowns
▶ demand-driven analysis
▶ widening/narrowing

▶ mixed flow-sensivitity, i.e., may collect flow-insensitive information while
performing a flow-sensitive analysis otherwise



10/35

TD is versatile.

TD supports

▶ dynamic dependencies between unknowns
▶ demand-driven analysis
▶ widening/narrowing

▶ mixed flow-sensivitity, i.e., may collect flow-insensitive information while
performing a flow-sensitive analysis otherwise



11/35

Change in example program

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 2;
return NULL;

}



11/35

Change in example program

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 2;
return NULL;

}



11/35

Change in example program

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 2;
return NULL;

}



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results

2. Identify changed
functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions

=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}

*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



12/35

Incremental Abstract Interpretation

stmain

1

retmain

main

⟨g⟩

Globals

stfoo

3

retfoo

foo

{p = &g}

{2}
*p = 2;

return NULL;

create(foo, &g);

return g;

1. Load old results
2. Identify changed

functions
=⇒ foo

3. Destabilize return
nodes of changed
functions

4. Call solve for retmain



13/35

Incremental Abstract Interpretation

▶ Reluctant
Destabilization

▶ Incremental
Warning
Generation

▶ Update rules for
globals

▶ IDE Integration



14/35

Effects of changes are sometimes local to the procedure.

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
printf("foo\n");
return NULL;

}
=⇒ Change has no impact outside of foo!



14/35

Effects of changes are sometimes local to the procedure.

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
printf("foo\n");
return NULL;

}
=⇒ Change has no impact outside of foo!



14/35

Effects of changes are sometimes local to the procedure.

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
printf("foo\n");
return NULL;

}

=⇒ Change has no impact outside of foo!



14/35

Effects of changes are sometimes local to the procedure.

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
return NULL;

}

=⇒

int g = 0;
int main(){

create(foo, &g);
return g;

}
void* foo(int *p){

*p = 1;
printf("foo\n");
return NULL;

}
=⇒ Change has no impact outside of foo!



15/35

Reluctant Destabilization

1. Load results

2. Destabilize changed functions and start solver from there
Non-local changes will destabilize end point of main.

3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.



15/35

Reluctant Destabilization

1. Load results
2. Destabilize changed functions and start solver from there

Non-local changes will destabilize end point of main.

3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.



15/35

Reluctant Destabilization

1. Load results
2. Destabilize changed functions and start solver from there

Non-local changes will destabilize end point of main.

3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.



16/35

Incremental Abstract Interpretation

▶ Reluctant
Destabilization

▶ Incremental
Warning
Generation

▶ Update rules for
globals

▶ IDE Integration



17/35

Observation: Warnings can be reused as well

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){

return NULL;
}

Warning:
Possible NULL-dereference
in line 3.

=⇒

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){
printf("get_pointer\n");
return NULL;

}

Warning:
Possible NULL-dereference
in line 3.



17/35

Observation: Warnings can be reused as well

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){

return NULL;
}

Warning:
Possible NULL-dereference
in line 3.

=⇒

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){
printf("get_pointer\n");
return NULL;

}

Warning:
Possible NULL-dereference
in line 3.



17/35

Observation: Warnings can be reused as well

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){

return NULL;
}

Warning:
Possible NULL-dereference
in line 3.

=⇒

int main(){
int *i = get_pointer();
return *i;

}
int* get_pointer(){
printf("get_pointer\n");
return NULL;

}

Warning:
Possible NULL-dereference
in line 3.



18/35

Incremental Warning Generation

▶ Keep track of unknowns never destabilized during
incremental run

▶ Warnings generated at these unknowns can be reused



19/35

Incremental Abstract Interpretation

▶ Reluctant
Destabilization

▶ Incremental
Warning
Generation

▶ Update rules for
globals

▶ IDE Integration



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:

▶ {0}, initial value in both versions
▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:
▶ {0}, initial value in both versions

▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:
▶ {0}, initial value in both versions
▶ {1}, write by foo in first version

▶ {2}, write by foo in second version
Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:
▶ {0}, initial value in both versions
▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:
▶ {0}, initial value in both versions
▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



20/35

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, ⟨g⟩ received contributions:
▶ {0}, initial value in both versions
▶ {1}, write by foo in first version
▶ {2}, write by foo in second version

Thus, ⟨g⟩ will have the value {0,1,2} in the incremental analysis.

=⇒ Flow-insensitive unknowns will contain artifacts from earlier programs.



21/35

Solutions

▶ Restarting
▶ Restart flow-insensitive unknowns by setting them to ⊥
▶ Destabilize all unknowns that cause a side effect

▶ Update Rules and Abstract Garbage Collection

▶ Remember where contributions came from
▶ ∆ upon re-evaluation
▶ Completely remove contributions from dead contexts



21/35

Solutions

▶ Restarting
▶ Restart flow-insensitive unknowns by setting them to ⊥
▶ Destabilize all unknowns that cause a side effect

▶ Update Rules and Abstract Garbage Collection

▶ Remember where contributions came from
▶ ∆ upon re-evaluation
▶ Completely remove contributions from dead contexts



21/35

Solutions

▶ Restarting
▶ Restart flow-insensitive unknowns by setting them to ⊥
▶ Destabilize all unknowns that cause a side effect

▶ Update Rules and Abstract Garbage Collection
▶ Remember where contributions came from

▶ ∆ upon re-evaluation
▶ Completely remove contributions from dead contexts



21/35

Solutions

▶ Restarting
▶ Restart flow-insensitive unknowns by setting them to ⊥
▶ Destabilize all unknowns that cause a side effect

▶ Update Rules and Abstract Garbage Collection
▶ Remember where contributions came from
▶ ∆ upon re-evaluation

▶ Completely remove contributions from dead contexts



21/35

Solutions

▶ Restarting
▶ Restart flow-insensitive unknowns by setting them to ⊥
▶ Destabilize all unknowns that cause a side effect

▶ Update Rules and Abstract Garbage Collection
▶ Remember where contributions came from
▶ ∆ upon re-evaluation
▶ Completely remove contributions from dead contexts



22/35

▶ Reluctant
Destabilization

▶ Incremental
Warning
Generation

▶ Update rules for
globals

▶ IDE Integration



23/35

Integrated into VS Code



24/35

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

▶ Intervals & exclusion sets
▶ Accesses & data-race detection



24/35

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

▶ Intervals & exclusion sets

▶ Accesses & data-race detection



24/35

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

▶ Intervals & exclusion sets
▶ Accesses & data-race detection



25/35

Results on ZSTANDARD

0 20 40 60 80 100 120

Number of Commits

32

64

128

256

512

1024

2048

4096

R
u
n
ti
m

e
in

s
(l
o
g
2

sc
a
le
)

(1)

(2)

(3)

(4)

Analysis runtimes on
commits with ≤ 50 lines
of code changed.
Configurations:
▶ non-incremental
▶ incremental
▶ + incremental

warning generation
▶ + reluctant

destabilization



25/35

Results on ZSTANDARD

0 10 20 30 40

Number of Commits

64

128

256

512

1024

2048

4096

R
u
n
ti
m

e
in

s
(l
o
g
2

sc
a
le
)

(1)

(2)

(3)

(4)

Analysis runtimes on
commits with > 50 lines
of code changed.
Configurations:
▶ non-incremental
▶ incremental
▶ + incremental

warning generation
▶ + reluctant

destabilization



26/35

Our previous work

▶ [Seidl et al., Chrisfest’20]: Incremental Abstract
Interpretation

▶ [Erhard et al., STTT’23]: Interactive Abstract
Interpretation: Reanalyzing Multithreaded C Programs for
Cheap

▶ [Stemmler et al., PLDI’25]: Taking out the Toxic Trash:
Recovering Precision in Mixed Flow-Sensitive Static
Analyses

§/goblint/analyzer



27/35

Vision: Interactive Abstract Interpretation During Development



28/35

From Incremental to Interactive

Consider not only changes to the input program

,
but also user interaction!

(one may think of it as changing the analysis specification)



28/35

From Incremental to Interactive

Consider not only changes to the input program,
but also user interaction!

(one may think of it as changing the analysis specification)



28/35

From Incremental to Interactive

Consider not only changes to the input program,
but also user interaction!

(one may think of it as changing the analysis specification)



29/35

Expert Developer Diane



30/35

Expert Developer Diane

▶ Coarse results immediately, refine in the background
▶ While fixing the most salient warning, the analysis may be

able to show less salient warnings spurious



31/35

Expert Developer Diane

▶ Surface semantic information

▶ complete call-graph
▶ dead branches
▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



31/35

Expert Developer Diane

▶ Surface semantic information
▶ complete call-graph

▶ dead branches
▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



31/35

Expert Developer Diane

▶ Surface semantic information
▶ complete call-graph
▶ dead branches

▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



31/35

Expert Developer Diane

▶ Surface semantic information
▶ complete call-graph
▶ dead branches
▶ (non-)nullness of arguments

▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



31/35

Expert Developer Diane

▶ Surface semantic information
▶ complete call-graph
▶ dead branches
▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



31/35

Expert Developer Diane

▶ Surface semantic information
▶ complete call-graph
▶ dead branches
▶ (non-)nullness of arguments
▶ ...

▶ Static analysis as treasure trove of information usually hidden
from Diane



32/35

Expert Developer Diane

▶ To drill-down on warnings locally enable

▶ (more) context-sensitivity
▶ (more) path-sensitivity
▶ (more) concurrency-sensitivity
▶ (more) expressive abstract domains



32/35

Expert Developer Diane

▶ To drill-down on warnings locally enable
▶ (more) context-sensitivity

▶ (more) path-sensitivity
▶ (more) concurrency-sensitivity
▶ (more) expressive abstract domains



32/35

Expert Developer Diane

▶ To drill-down on warnings locally enable
▶ (more) context-sensitivity
▶ (more) path-sensitivity

▶ (more) concurrency-sensitivity
▶ (more) expressive abstract domains



32/35

Expert Developer Diane

▶ To drill-down on warnings locally enable
▶ (more) context-sensitivity
▶ (more) path-sensitivity
▶ (more) concurrency-sensitivity

▶ (more) expressive abstract domains



32/35

Expert Developer Diane

▶ To drill-down on warnings locally enable
▶ (more) context-sensitivity
▶ (more) path-sensitivity
▶ (more) concurrency-sensitivity
▶ (more) expressive abstract domains



33/35

... and beyond soundness:

▶ Ask Diane why some alarm is false (e.g., "these two pointers
can never alias")

▶ Refine analysis relying on this information.



34/35

...while limiting recomputation!



35/35

Thank you!
▶ Precise incremental abstract interpretation of multi-threaded programs
▶ Ideas and ingredients for interactive abstract interpretation

Supported in part by Deutsche Forschungsgemeinschaft DFG (378803395&503812980); the Estonian Research Council (PSG61); the Shota Rustaveli National Science Foundation of Georgia (FR-21-7973); the Estonian Centre of
Excellence in IT (EXCITE), funded by the European Regional Development Fund; and the European Union and the Estonian Research Council (TEM-TA119). This research is also supported in part by the National Research Foundation,
Singapore, and Cyber Security Agency of Singapore under its National Cybersecurity R&D Programme (Fuzz Testing NRF-NCR25-Fuzz-0001). Any opinions, findings and conclusions, or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National Research Foundation, Singapore, and Cyber Security Agency of Singapore.


	Motivation: Incremental Software Development
	Abstract Interpretation
	Equation Systems
	Top-Down Solver

	Incremental Abstract Interpretation
	Example
	Algorithm

	Interactive Abstract Interpretation
	Reluctant Destabilization
	Restarting

	Experiments
	Conclusion

