Towards Interactive Abstract Interpretation
for Multithreaded Programs

Michael Schwarz Helmut Seidl
+
Julian Erhard Karoliine Holter Simmo Saan
Sarah Tilscher Vesal Vojdani

Schloss Dagstuhl, October 2025

NUS "
M MAXIMILIANS
UNIVERSITAT

B

b

UNIVERSITY
orF TARTU

1632

Provide Abstract Interpretation During Development

v~ N\

<
N

Abstract interpretation: Expensive Fixpoint Computation

Program

Frontend

yields

Control-
flow
Graphs

Analysis

specifies

Equation
System

Fixpoint
Solver

computes

Solution

Postsolver

computes

Warnings

Abstract interpretation: Expensive Fixpoint Computation

Program

Frontend

yields

Control-
flow
Graphs

Analysis

specifies

Equation
System

Fixpoint
Solver

computes

Solution

Postsolver

computes

Warnings

Observation: Software development is incremental

om0 1o o oant

4/35

Observation: Software development is incremental

» Software
development is
incremental

/“MM

Observation: Software development is incremental

a\ > Software
\ i : i development is
" TOWreT N incremental

» Single commits
usually make small
‘ changes

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

Idea: Static analysis should be incremental, too!

Re-analyze only the increments

... and their impact

Idea: Static analysis should be incremental, too!

Re-analyze only the increments
... and their impact

Required: semantic dependencies

Idea: Static analysis should be incremental, too!

Re-analyze only the increments
... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies

Idea: Static analysis should be incremental, too!

Re-analyze only the increments
... and their impact

Required: semantic dependencies

The top-down solver TD already tracks dependencies

$a@ GOBLINT

TD maintains dependencies and stable unknowns.

TD tracks

TD maintains dependencies and stable unknowns.

TD tracks
> set of stable unknowns

TD maintains dependencies and stable unknowns.

TD tracks
» set of stable unknowns
» set of called unknowns — those are currently active

TD maintains dependencies and stable unknowns.

TD tracks
» set of stable unknowns
» set of called unknowns — those are currently active
» influence relationship between unknowns

TD maintains dependencies and stable unknowns.

TD tracks
» set of stable unknowns
» set of called unknowns — those are currently active
» influence relationship between unknowns
» mapping from unknowns to abstract values

TD maintains dependencies and stable unknowns.

TD tracks
» set of stable unknowns
set of called unknowns —those are currently active
influence relationship between unknowns
mapping from unknowns to abstract values

when unknown changes, it is destabilized
— remove all unknowns from stable that depend on it and are not called.

>
>
>
>

Example program

int g = 0;

int main () {
create (foo, &qg);
return g;

}

voidx foo (int »*p) {
o= 1
return NULL;

Example program

main foo
create (foo, &g); *p = 1;
return g; return NULL;

Example program

main foo

» Treat variables
@ @ shared between
threads
create(foo, £9); e flow-insensitively:
return g; return NULL;

Example program

main

create (foo, &qg);

return g;

foo

» Treat variables
@ shared between
threads
R flow-insensitively:
° — Add unknown (g) to
collect abstraction

return NULL; of all values g may

@ ever have

Example program

main Globals

create (foo, &qg);

return g;

foo

» Treat variables
@ shared between
threads
R flow-insensitively:
° — Add unknown (g) to
collect abstraction

return NULL; of all values g may

@ ever have

Example Run of Top-Down Solver

main Globals foo » Callto
@ @ Solve retmam
» recursively
create (foo, &9g); *p = 1; .
computes solution
’ ° > stable
» called
return g; return NULL;

Example Run of Top-Down Solver

main Globals foo » Callto

@ @ solve retmain
> recursively
create (foo, &9g); *p = 1; .
computes solution
’ c » stable
>
return g; return NULL; called

Example Run of Top-Down Solver

main Globals foo » Callto
@ @ solve retmain
> .
create (foo, &9g); «p = 1; recursively .
computes solution
‘ a > stable
return g; return NULL; > called

Example Run of Top-Down Solver

main Globals foo » Callto

@ @ solve retmain

> recursively

create (foo, &g); *p = 1; .
computes solution
a » stable
return g; return NULL; > called

Example Run of Top-Down Solver

main Globals foo » Callto
% @ solve retmain
> .
create (foo, &9g); «p = 1; recursively .
computes solution
‘ a > stable
return g; return NULL; > called

Example Run of Top-Down Solver

{p=&g} .
main __.~~Globals “foo > Callto
% ’ @ solve retmain
/1’ > .
crgate (foo, &qg); «p = 1; recursively .
" computes solution
‘ Q > stable
return g; return NULL; > called

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

H .M > recursively

cr,eéte (foo, &9g); .
/ computes solution

*p = 1;
®) e

> 11
return g; return NULL; ca ed

Solve retmam

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

create (foo, &q); *p = 1;

return g; return NULL;

Solve retmam

» recursively
computes solution

» stable
» called

Example Run of Top-Down Solver

p=> .
main _.-~Globals “foo » Callto

@ @ solve retmain

» recursively
crgate (foo, &9g); *p = 1; .
4 computes solution
‘ o R > stable
» called
return g; return NULL;

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

create (foo, &q); *p = 1;

return g; return NULL;

Solve retmam

» recursively
computes solution

» stable
» called

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

cr,eéte (foo, &9g);

return g; return NULL;

Solve retmam

» recursively
computes solution

» stable
» called

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

crgéte(foo, &9) ;

return g;

Solve retmam

» recursively
computes solution

» stable
» called

return NULL;

Example Run of Top-Down Solver

p=&g}
main __~Globals foo » Callto

crgéte(foo, &9) ;

Solve retmam

» recursively
computes solution

» stable
» called

return g; return NULL;

Example Run of Top-Down Solver

p=2&g}
main _.~~Globals o » Callto

create (foo, &q);

SOlve retmam

> recursively
computes solution

» stable
> called

return g;

return NULL;

Example Run of Top-Down Solver

p=2&g}
main _.~~Globals o » Callto

<

create (foo, &q);

SOlve retmam

> recursively
computes solution

» stable
> called

return NULL;

Example Run of Top-Down Solver

p=&gy
main _.~~Globals oo » Call to

solve retmam

» recursively

crgéte(foo, &9) ; = 1; .
; computes solution
........ v — > stable
» called

return g; return NULL;

TD is versatile.

TD supports

TD is versatile.

TD supports

» dynamic dependencies between unknowns
» demand-driven analysis
» widening/narrowing

TD is versatile.

TD supports

» dynamic dependencies between unknowns
» demand-driven analysis
» widening/narrowing

» mixed flow-sensivitity, i.e., may collect flow-insensitive information while
performing a flow-sensitive analysis otherwise

Change in example program

int g = 0;

int main () {
create (foo, &g);
return g;

}

voidx foo (int »*p) {
o= 1
return NULL;

Change in example program

int g = 0;

int main () {
create (foo, &g);
return g;

}

voidx foo (int »*p) {
o= 1
return NULL;

Change in example program

int g = 0; int g = 0;

int main () { int main () {
create (foo, &g); create (foo, &qg);
return g; return g;

} — }

voidx foo (int »*p) { voidx foo (int »*p) {
*p = 1; *xp = 2;

return NULL; return NULL;

Incremental Abstract Interpretation

p=2&g} 1. Load old results
main __.-—Globals foo
c;eéte(foo, &q) *p = 2
return g; return NULL;

Incremental Abstract Interpretation

p=2&g} 1. Load old results
main - Globals a0 2. |dentify changed
@ functions
cr;ééte(foo, &qg) *p = 25
return g; return NULL;

Incremental Abstract Interpretation

p=2&g} 1. Load old results
main - Globals a0 2. |dentify changed
@ functions
: = foo
cr;éate(foo, &9) ; *p = 2;
return g; return NULL;

Incremental Abstract Interpretation

p=2&g} 1. Load old results
main - Globals a0 2. |dentify changed
’ @ functions
. 7 — foo
crgate (foo, &9g); *p = 2; .
o ° nodes of changed
o T functions
return g; return NULL;

Incremental Abstract Interpretation

1. Load old results

main Globals foo 2. ldentify changed
@ functions
— foo

create (foo, &g); *p = 25 -
3. Destabilize return
0 ° nodes of changed
functions
return g; return NULL;

Incremental Abstract Interpretation

1. Load old results

main Globals foo 2. Identify changed
@ @ functions
— foo
create (foo, &g); *p = 25 -

3. Destabilize return

0 ° nodes of changed
functions

return g; return NULL;

4. Call solve for retmain

Incremental Abstract Interpretation

{p::&€}”> ________________ . 1. Load old results
main ”_‘,‘«-“G'Oba's oo 2. Identify changed
functions
: {21 ™ = foo

creéte(foo, &9) ; -
3 3. Destabilize return

nodes of changed
functions

4. Call solve for retmain

return g; return NULL;

Incremental Abstract Interpretation

JO, R

> Reluctant » Update rules for » IDE Integration
Destabilization globals

» Incremental
Warning

Generation

Effects of changes are sometimes local to the procedure.

int g = 0;
int main () {
create (foo, ¢&9g);
return g;
}
voidx foo (int «*p) {
o= 1
return NULL;

Effects of changes are sometimes local to the procedure.

int g = 0;
int main () {
create (foo, ¢&9g);
return g;
}
voidx foo (int «*p) {
o= 1
return NULL;

Effects of changes are sometimes local to the procedure.

int g = 0;
int main () {
create (foo, ¢&9g);
return g;
}
voidx foo (int «*p) {
o= 1
return NULL;

int g = 0;

int main () {
create (foo, &g);
return g;

}

voidx foo (int «*p) {
*p = 1;
printf ("foo\n") ;
return NULL;

Effects of changes are sometimes local to the procedure.

int g = 0;
int main () {
create (foo, &9g);
return g;
}
voidx foo (int «*p) {
p o= 1;
return NULL;

— Change has no impact outside of foo!

int g = 0;

int main () {
create (foo, &g);
return g;

}

voidx foo (int «*p) {
*p = 1;
printf ("foo\n") ;
return NULL;

Reluctant Destabilization

1. Load resulis

Reluctant Destabilization

1. Load resulis

2. Destabilize changed functions and start solver from there
Non-local changes will destabilize end point of main.

Reluctant Destabilization

1. Load results
2. Destabilize changed functions and start solver from there
Non-local changes will destabilize end point of main.

3. Solve end point of main. If all changes were local, the end
point of main is stable, so nothing to do.

Incremental Abstract Interpretation

JO, R

> Reluctant » Update rules for > IDE Integration
Destabilization globals

» Incremental
Warning

Generation

Observation: Warnings can be reused as well

int main () {
int i = get_pointer();
return xi;

}

intx get_pointer () {
return NULL;

}

Warning:

Possible NULL-dereference

in line 3.

Observation: Warnings can be reused as well

int main () {
int i = get_pointer();
return xi;
}
intx get_pointer () {
return NULL; —
}
Warning:
Possible NULL-dereference
in line 3.

Observation: Warnings can be reused as well

int main () {
int i = get_pointer();
return xij;

}

int+ get_pointer () {
printf ("get_pointer\n") ;
return NULL;

}

Warning:

Possible NULL-dereference

in line 3.

int main () {
int i = get_pointer();
return xi;
}
intx get_pointer () {
return NULL; —
}
Warning:
Possible NULL-dereference
in line 3.

Incremental Warning Generation

» Keep track of unknowns never destabilized during
incremental run

» Warnings generated at these unknowns can be reused

Incremental Abstract Interpretation

JO, R

> Reluctant » Update rules for » IDE Integration
Destabilization globals

» Incremental
Warning

Generation

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions
» {1}, write by foo in first version

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions
» {1}, write by foo in first version
> {2}, write by foo in second version

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions
» {1}, write by foo in first version
> {2}, write by foo in second version

Thus, (g) will have the value {0, 1,2} in the incremental analysis.

Observation: Flow-insensitive invariants accumulate imprecision.

In our incremental analysis example, (g) received contributions:
» {0}, initial value in both versions
» {1}, write by foo in first version
> {2}, write by foo in second version

Thus, (g) will have the value {0, 1,2} in the incremental analysis.

= Flow-insensitive unknowns will contain artifacts from earlier programs.

Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

» Update Rules and Abstract Garbage Collection

Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

» Update Rules and Abstract Garbage Collection
» Remember where contributions came from

Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

» Update Rules and Abstract Garbage Collection

» Remember where contributions came from
» A upon re-evaluation

Solutions

» Restarting

> Restart flow-insensitive unknowns by setting them to L
» Destabilize all unknowns that cause a side effect

» Update Rules and Abstract Garbage Collection
» Remember where contributions came from
» A upon re-evaluation
» Completely remove contributions from dead contexts

JC) © R

> Reluctant » Update rules for > IDE Integration
Destabilization globals

» Incremental
Warning

Generation

Integrated into VS Code

X) Fle Edt Selection View Go Run Terminal Help example.c - DemoProject W= Ubuntu-20.04] - Visual tucko Code

C eamplec 4 X
€ examps
#include <pthread.h>
#include <stdio.h>

int myglobal;
pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;

void *t_fun(void *arg) {
pthread_nutex_lock (&nutex1);

myglobal=myglobal+l;
11 pthread_mutex_unlock(&mutex1)
12 return NULL;

13}

15 int main(void) {

16 pthread_t id;

17 pthread_create(8id, NULL, t_fun, NULL);
18 pthread_mutex_lock(&mutex2);

19 myglobal=myglobal+l;

return NULL;

20 pthread_mutex_unlock(8mutex2);
21 pthread_join (id, NULL);

22 return o

23}

2

ewanal sRomiems @ DEeuG consolE ouT

v € examplec s

A
A\ Race] Group: Memory location myglobal@example.c4:5-4:13 (race with conf. 110)

ead_mutex_t mutexl
read_mutex_t mutex2 =

void *t_fun(veid *arg) {
pthread_mutex_lock(&mutexl);
myglobal=myglobal+l;

pthread_mutex_unlock(&mutex1);

wiite with [mhp{tid=[mainl;
xample.c45-4:13 (race

cated

main, t fun@./src/example.c1 73-17:40]), |
10)

(Race] Group: Memory lacation myglob with con,

5 WS Ubuntu-20.04

(mutex2), thread{main)]

v readwith [mhp:{tid=(main, t fun@Jsrc/example.c17:3-1740,
lock{mutex1), thread:{main, _fun@ /src/example.:17:3-17:401] (conf. 110) (exp: & myglobal)
read with [mhptid=[mainl; created=({main, { fun@./src/example.c:17:3-17:40), lock{mutex?), threacimaini] tconf, 110) (exp: & myglobal)
wite with [mhpe(tid={main, t fun@ fsrc/example.c:17:3-17:40l) kock(mutext], thread{main, ¢ fund 17:3-17:40]) (cont. 110) (exp: & myglobal)

conf. 110) (exp: & myglobal)

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

» Intervals & exclusion sets

Experiments

Analyze commits of ZSTANDARD compression algorithm (~22,300 LoC).

» Intervals & exclusion sets
» Accesses & data-race detection

Results on ZSTANDARD

4096
2048
1024
? |
3
#
[
§ 512 o H
Y i
kS B
ek
E 256) .‘l
- I bt -
é ——————
r”]
128 o) i
3
— s
—— T
] _/——-—————— ._"
T .
B e Ll b
................... =5
M—-—- :
32 =
T . , I | |
0 20 40 60 80 100 s

Number of Commits

Analysis runtimes on
commits with < 50 lines
of code changed.
Configurations:

» non-incremental

» incremental

» + incremental

warning generation

» + reluctant
destabilization

Results on ZSTANDARD

(logs scale)

Runtime in s

1096 o
i
2048 o
1024 -
I
_pe
12 R L i
1= =t
e ——— J 1
Wy i _._,_._!
mgmm—————T
T
—
128 o r !
-
i
—_— T
64 —_— o= -
I -
e -
= —®
- @
T T T T
0 10 20 30 10

Number of Commits

Analysis runtimes on
commits with > 50 lines
of code changed.
Configurations:

» non-incremental

» incremental

» +incremental

warning generation

» + reluctant
destabilization

Our previous work

> [Seidl et al., Chrisfest’20]: Incremental Abstract
Interpretation

» [Erhard et al., STTT'23]: Interactive Abstract
Interpretation: Reanalyzing Multithreaded C Programs for GOB LIN'
Cheap ¢)/goblint/analyzer

» [Stemmler et al., PLDI'25]: Taking out the Toxic Trash:

Recovering Precision in Mixed Flow-Sensitive Static
Analyses

Vision: Interactive Abstract Interpretation During Development

v~ N\

<
N

From Incremental to Interactive

Consider not only changes to the input program

From Incremental to Interactive

Consider not only changes to the input program,
but also user interaction!

From Incremental to Interactive

Consider not only changes to the input program,
but also user interaction!

(one may think of it as changing the analysis specification)

3

Expert Developer Diane

Expert Developer Diane

» Coarse results immediately, refine in the background

» While fixing the most salient warning, the analysis may be
able to show less salient warnings spurious

Expert Developer Diane

» Surface semantic information

Expert Developer Diane

» Surface semantic information
» complete call-graph

Expert Developer Diane

» Surface semantic information

» complete call-graph
» dead branches

Expert Developer Diane

» Surface semantic information

> complete call-graph
> dead branches
> (non-)nullness of arguments

Expert Developer Diane

» Surface semantic information

> complete call-graph

> dead branches

> (non-)nullness of arguments
> ..

Expert Developer Diane

» Surface semantic information

> complete call-graph

> dead branches

> (non-)nullness of arguments
> ..

» Static analysis as treasure trove of information usually hidden
from Diane

Expert Developer Diane

» To drill-down on warnings locally enable

Expert Developer Diane

» To drill-down on warnings locally enable

> (more) context-sensitivity

Expert Developer Diane

» To drill-down on warnings locally enable

> (more) context-sensitivity
> (more) path-sensitivity

Expert Developer Diane

» To drill-down on warnings locally enable
> (more) context-sensitivity
> (more) path-sensitivity
> (more) concurrency-sensitivity

Expert Developer Diane

» To drill-down on warnings locally enable

(more) context-sensitivity

(more) path-sensitivity

(more) concurrency-sensitivity
(more) expressive abstract domains

vVVvyVvyyYy

... and beyond soundness:

» Ask Diane why some alarm is false (e.g., "these two pointers
can never alias")

» Refine analysis relying on this information.

<}

...while limiting recomputation!

Thank you!

» Precise incremental abstract interpretation of multi-threaded programs
» Ideas and ingredients for interactive abstract interpretation

n Centre of
ch Foundation.

Foundation of Georgia (FR-21-79
ch is also supported in part by th
d conclusions, or recommendations expressed in this material are

Supported in part by Deutsche Forschungsgemei ft DFG (3788033958&503812980); the Estonian Research Council (PSG61); the Shota Rustaveli National St
Excellence in IT (EXCITE), funded by the European Regional Development Fund; and the European Union and the Estonian Research Council (TEM-TA119). Thi
Singapore, and Cyber Security Agency of Singapore under its National Cybersecurity R&D Programme (Fuzz Testing NRF-NCR25-Fuzz-0001). Any opinions, finding
those of the author(s) and do not reflect the views of National Research Foundation, Singapore, and Cyber Security Agency of Singapore.

NATIONAL RESEARCH FOUNDATION
DF Deutsche) B e MinisTes OFFce
) — Forschungsgemeinschaft S STNOAPORE Soarons
RUSTAVELI NATIONAL Research..Innovation . Enterprise European Union Investing

R T ONBATION EurptonRogonal iy s
BevommontFund

Cofunded by Investng
the European Union inyour fcre

	Motivation: Incremental Software Development
	Abstract Interpretation
	Equation Systems
	Top-Down Solver

	Incremental Abstract Interpretation
	Example
	Algorithm

	Interactive Abstract Interpretation
	Reluctant Destabilization
	Restarting

	Experiments
	Conclusion

